Россия, 196084, г. Санкт-Петербург, Люботинский пр. 8A; тел. (812) 380-6200, факс (812) 380-6202; e-mail: office@testron.ru internet: www.testron.ru

FILIN CT-600

ПРОМЫШЛЕННЫЕ ТОМОГРАФЫ ВЫСОКОГО РАЗРЕШЕНИЯ

FILIN CT-600 – универсальные промышленные системы рентгеновской 3-D дефектоскопии, томографии и метрологии с мощной острофокусной рентгеновской трубкой, предназначенные для контроля объектов широкого класса диаметром примерно до 600мм.

Особенности прибора.

- Мощная острофокусная трубка с напряжением до 225/320/450/600кВ в зависимости от модели - просвечивание больших толщин металлов (до 75 мм по стали в режиме томографии).
- Послойная томография в коническом пучке.
- Томография в веерном пучке с использованием опционального линейного детектора.
- Режим спиральной томографии (опция) корректное выявление произвольно ориентированных плоскостных дефектов и структурных элементов.
- Режим виртуального расширения детектора.
- Режимы рентгенотелевидения и радиографии высокопроизводительная 2D-дефектоскопия.
- Прецизионный 5-ти или 6-ти осевой манипулятор с несущими элементами из гранита.
- Термостабилизация детектора (опция) повышение качества томограмм за счет уменьшения теплового шума детектора.
- Система коррекции нарушений юстировки в реальном времени (опция RTA) повышает метрологическую точность прибора при использовании микрофокусных трубок.
- Калибровочные эталоны и ПО для автоматизированной настройки томографа.
- Опция SST (Scatter Suppress Tool) минимизация артефактов рассеяния. Детектирование неискаженного распределения плотности в сечениях.
- Опция Метрология: сертификат утверждения типа средств измерения, эталоны.
- Модули автоматизированного сравнения с САПР-данными, анализа толщины стенок, анализа пустот и включений.
- Автономная защитная камера.
- Разработка и согласование проекта размещения источника ионизирующих излучений.
- Рабочая станция 3D-визуализации повышенной производительности.

Описание системы.

Система построена на базе мощной острофокусной рентгеновской трубки и высокочастотных генераторов повышенной стабильности последнего поколения. Ускоряющее напряжение на трубке до 600кВ позволяет контролировать объекты с радиационной толщиной до 75мм стали в режиме томографии и до 120-140мм в режиме 2D-инспекции.

Смещение предметного стола по оси X (ось увеличения) позволяет выбрать схему просвечивания, исходя из компромисса между размерами поля контроля и пространственным разрешением.

Режим виртуального расширения детектора позволяет проводить томографию объектов, диаметр которых значительно превышает размер рабочей области детектора.

Для просмотра в 2D-режиме объекта, размеры которого превышают выбранное поле контроля, можно воспользоваться смещением стола по оси Y (поперечная ось) и смещением трубки и детектора по оси Z (вертикальная ось).

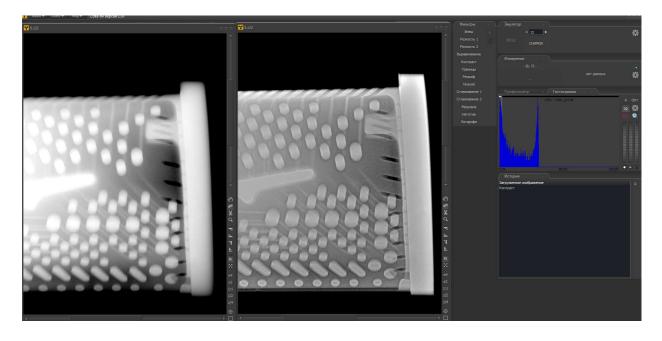
Комплекс может поставляться как в комплекте с компактной камерой биологической защиты, так и располагаться в стационарной бетонной камере.

Производитель выполняет проект размещения источника ионизирующих излучений для получения разрешения Роспотребнадзора на работу.

Рабочее место оператора снабжено четырьмя мониторами. На первый выводится интерфейс управления установкой, на второй – интерфейс системы обработки двумерных проекций, на третий – интерфейс программы трехмерной визуализации. Четвертый монитор является элементом системы видеонаблюдения зоны контроля.

Настройка и калибровка томографа производится в ходе технического обслуживания персоналом производителя или обученным персоналом заказчика. Для калибровки томографа в комплект поставки входят специальные калибровочные эталоны и специализированное ПО.

Типовые программы (рецепты) 2-D и 3-D контроля составляются квалифицированным персоналом заказчика с помощью средств программы управления установкой. Автоматизированный контроль по типовым рецептам может проводиться персоналом, не имеющим специальной квалификации. Установка снабжена специальной кнопкой, позволяющей снять томограмму изделия, помещающегося в поле контроля, в полностью автоматическом режиме

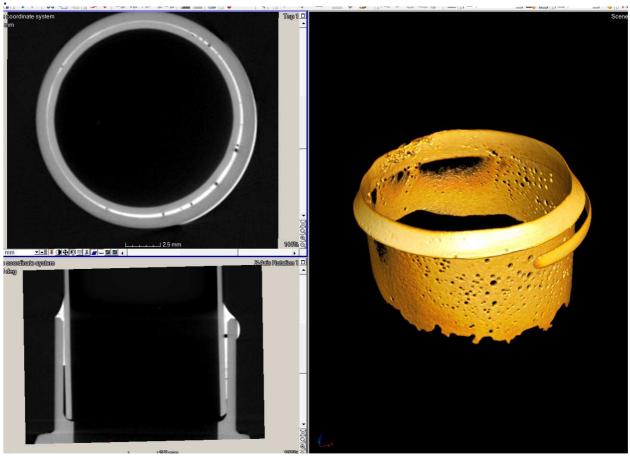

Рентгенотелевизионный и радиографический режимы (2D-инспекция).

В рентгенотелевизионном режиме оператор наблюдает рентгеновское изображение в реальном времени. В этом режиме удобно выбирать параметры излучения, участки контроля и оптимальные ракурсы съемки.

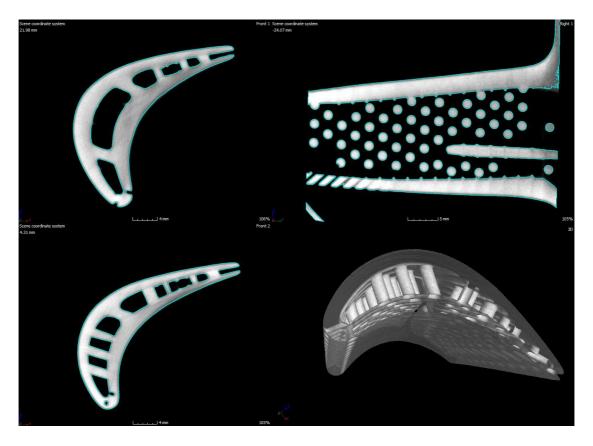
Получение высококачественных радиографических изображений для расшифровки обычно производится в статике с накоплением необходимого числа кадров для достижения требуемой чувствительности. Снимки для нескольких участков контроля могут быть объединены в «склейку».

Система улучшения изображений дает возможность масштабирования, цифровой фильтрации, окрашивания изображения, автоматического поиска и измерения параметров дефектов. Применение оригинального алгоритма АВУ позволяет одновременно наблюдать на экране монитора изображения дефектов, расположенных на участках с радиационными толщинами, отличающимися во много раз.

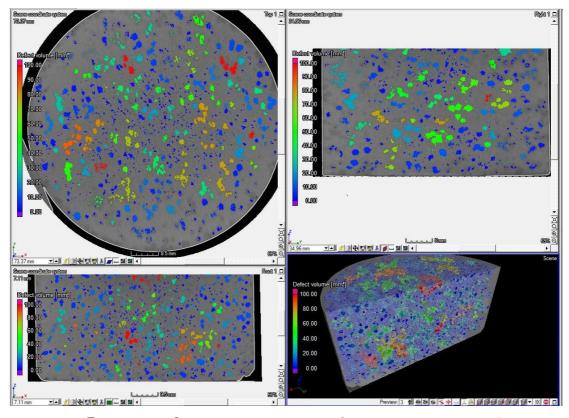
Возможно определение глубины залегания дефектов по результатам двупроекционной радиоскопической съемки с помощью имеющейся специализированной программы.

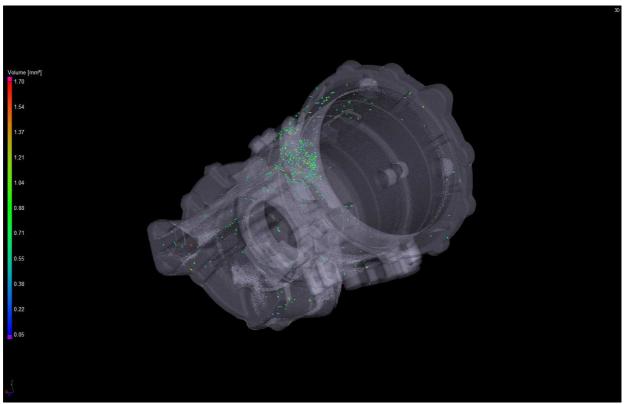

2D-изображение турбинной лопатки. Применение алгоритма ABУ

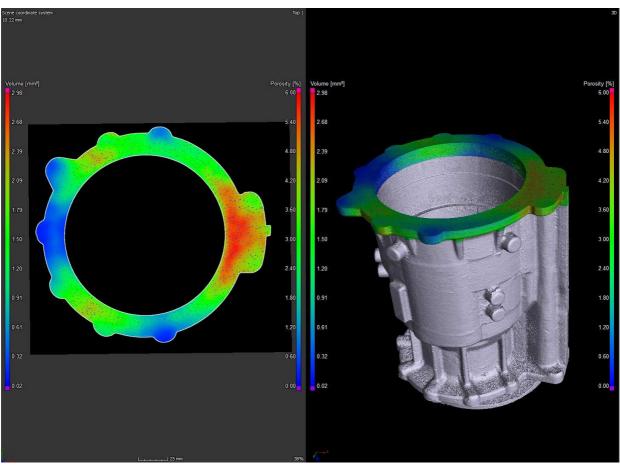
Режим 3D-контроля.

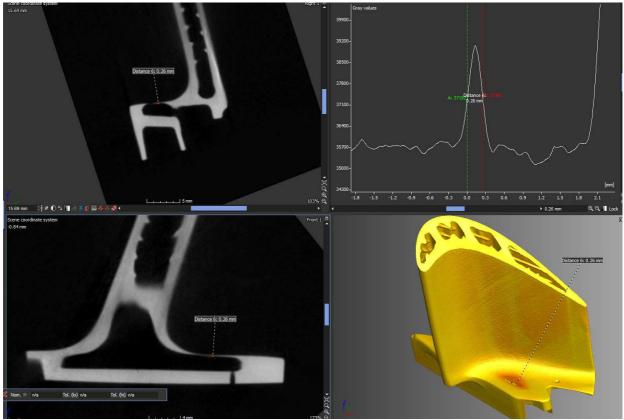

По результатам томографической съемки формируется трехмерная воксельная модель объекта. Программа трехмерной визуализации позволяет вывести на экран изображение произвольных сечений. По изображениям сечений можно выполнять точные измерения расстояний и углов с автоматической привязкой к характерным точкам объекта. В частности, оператор может быстро измерить положение каждого выявленного дефекта относительно стенок объекта.

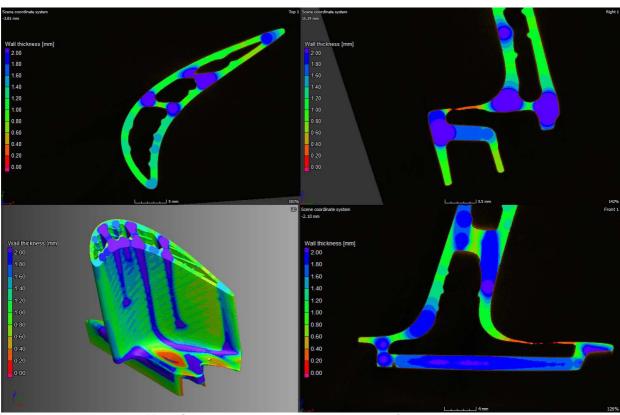
Возможна визуализация трехмерной модели объекта или выбранных его областей в выбранном ракурсе с применением приемов цифровой обработки, облегчающих анализ объектов со сложной внутренней структурой (окрашивание, полупрозрачные изображения, виртуальные разрезы и сечения).


Опционально доступны модули специализированного анализа трехмерных моделей: Анализ пустот и включений, Толщина стенок, и др.

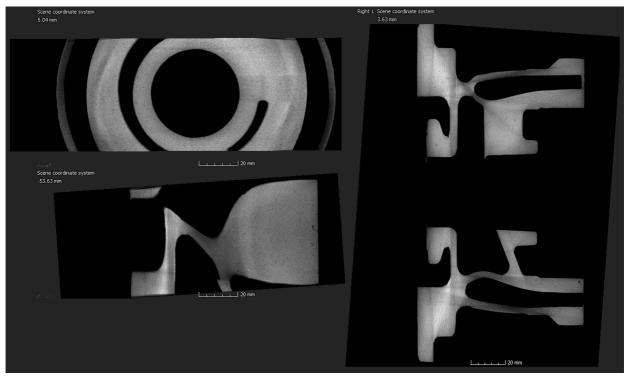

Паяное соединение. Диаметр 15мм. Сегментация, с выделением изображения припоя.


Трехмерная модель турбинной лопатки. Выделение поверхности


Трёхмерная модель геологического керна. Анализ пустот и включений.


Алюминиевое литье. Крупные дефекты.

Алюминиевое литье. Пористость фланца.


Исследование утонения стенки полки турбинной лопатки.

Исследование утонения стенки полки турбинной лопатки.

Опция SST (Scatter Suppress Tool)

Оригинальный алгоритм, разработанный АО «Тестрон». Позволяет подавлять вклад рассеянного излучения в проекционные данные. Резко улучшает качество трехмерной модели, особенно при больших радиационных толщинах. Делает возможным применение модулей анализа (выделение поверхности, анализ пустот и включений, анализ геометрии...) в случаях, когда при стандартной обработке они неприменимы из-за сильного влияния артефактов.

Алюминиевое литье. Стандартный алгоритм восстановления.

Алюминиевое литье. Применение алгоритма SST(Тестрон).

Технические характеристики

Параметр	Значение
Общие параметры системы	
Режимы работы	Послойная томография в коническом пучке Томография в веерном пучке Спиральная томография в коническом пучке (опция) Рентгенотелевизионный Радиография
Методы регистрации томограммы	Непрерывное вращение Пошаговая съемка
Максимальное напряжение, фокус и мощность трубки - с рентгеновской трубкой TNX-225/0410C - с рентгеновской трубкой TNX-320/0410C - с рентгеновской трубкой TNX-450/0410C - с рентгеновской трубкой TNX-600/0410C	225кВ (0,4мм @ 800Вт / 1,0мм @ 1800Вт) 320кВ (0,4мм @ 800Вт / 1,0мм @ 1800Вт) 450кВ (0,4мм @ 700Вт / 1,0мм @ 1500Вт) 600кВ (0,4мм @ 700Вт / 1,0мм @ 1500Вт)
Максимальный диаметр и толщина слоя 3D-сканирования D / L *	
- для детектора 4343SR с рабочей областью 427х427мм	630x200 мм в режиме виртуального расширения детектора 360x290 мм в стандартном режиме сканирования
- для детектора 4040SR с рабочей областью 410х410мм	610x200 мм в режиме виртуального расширения детектора 340x280 мм в стандартном режиме сканирования
- для детектора 4040HR с рабочей областью 410х410мм	610x200 мм в режиме виртуального расширения детектора 340x280 мм в стандартном режиме сканирования
- для детектора 4030SR с рабочей областью 405х291мм	600x140 мм в режиме виртуального расширения детектора 340x200 мм в стандартном режиме сканирования
- для детектора 2530SR с рабочей областью 302x249мм	480x140 мм в режиме виртуального расширения детектора 260x180 мм в стандартном режиме сканирования
*) представлены данные для фокусного расстояния 1300мм	1000
Максимальная высота зоны 3D-сканирования	1000 MM
Геометрическое увеличение	1,16 – 2,00
Фокусное расстояние (от точки фокуса до детектора) Базовое пространственное разрешение системы трубка/детектор при оптимальном увеличении* - для детектора с размером пикселя 100мкм	1300 мм (максимум)
- для детектора с размером пикселя 100мкм - для детектора с размером пикселя 127мкм - для детектора с размером пикселя 200мкм	90 мкм 110 мкм 115 мкм 140 мкм
) может ограничиваться сцинтиллятором Минимально различимые дефекты *) может ограничиваться радиационной толщиной	He хуже ~ 100 мкм
Объект контроля	
Максимальный диаметр объекта	600 мм
Максимальная высота объекта	1000мм
Максимальная масса объекта	50 кг

Детекторы (по выбору заказчика)	
4040SR низкого разрешения для съемки в конусном пучке	410х410мм рабочее поле, 200 мкм размер пикселя,
	2048*2048 пикселей, 16 бит динамический диапазон,
	скорость 1 кадр/сек @ 1:1 и 4 кадр/сек @ 2:2
4343SR среднего разрешения для съемки в конусном пучке	427х427мм рабочее поле, 139 мкм размер пикселя,
	3072*3072 пикселей, 16 бит динамический диапазон, скорость 4 кадр/сек @ 1:1 и 15 кадр/сек @ 2:2
	410х410мм рабочее поле, 100 мкм размер пикселя,
4040HR высокого разрешения для съемки в конусном пучке	4096*4096 пикселей, 16 бит динамический диапазон,
	скорость 3,75 кадр/сек @ 1:1 и 7,5 кадр/сек @ 2:2
4030HR среднего разрешения для съемки в конусном пучке	405х291мм рабочее поле, 127 мкм размер пикселя,
	3200*2304 пикселей, 14 бит динамический диапазон,
	скорость 3 кадр/сек @ 1:1 и 7 кадр/сек @ 2:2
2530SR среднего разрешения для съемки в конусном пучке	249х302мм рабочее поле, 139 мкм размер пикселя,
	1792*2176 пикселей, 16 бит динамический диапазон,
	скорость 9 кадр/сек @ 1:1 и 30 кадр/сек @ 2:2
Система термостабилизации (опция)	Замкнутый контур водяного охлаждения с
	принудительным воздушным охлаждением.
Манипуляционное оборудование	
манипуляционное осорудование Тип	Прецизионный томографический манипулятор на основе
1 7011	гранитных плит
Число степеней свободы	5
Материал несущей конструкции	гранит
Поворотная ось вращения объекта:	- Вращение 360° (многооборотный).
nosopoman ous spa quinin ou soma.	- Точность установки угла 0.5 угл. мин.
	- Скорость вращения до 1 об./мин.
Линейная ось увеличения:	- Линейный ход 450мм.
•	- Скорость линейной подачи до 100мм/с.
	- Точность установки 20мкм.
Линейная ось высоты трубки:	- Линейный ход 860мм.
	- Скорость линейной подачи до 100мм/с.
	- Точность установки 20мкм.
Линейная ось высоты детектора:	- Линейный ход 860мм.
	- Скорость линейной подачи до 100мм/с.
	- Точность установки 20мкм.
Линейная ось поперечного смещения объекта:	- Линейный ход 400мм.
	- Скорость линейной подачи до 100мм/с.
	- Точность установки 20мкм.
Пучезащитная кабина	
Конструкция	слоеная сталь - свинец - сталь
Размеры (Ш х Г х В)	(Ш) 2800 мм х (Г) 2000 мм х (В) 2700 мм
Bec	
- при напряжениях до 225кВ	~ 4'000 кг
- при напряжениях до 320кВ	~ 7'000 кг
- при напряжениях до 450кВ	~ 15′000 кг
- при напряжениях до 600кВ	~ 30'000 кг
Мощность дозы в 10 см от поверхности	< 2 мкЗв/ч
Доступ	- моторизованная сдвижная дверь
Системы безопасности	- внешняя и внутренняя световая сигнализация
	- внешняя и внутренняя кнопки аварийного отключения
	- защитная блокировка двери с двумя независимыми

	контурами - защитная рейка для предотвращения захвата дверью частей тела и предметов - контактный коврик, блокирующий излучение
Система видеонаблюдения	4-камерная цветная с квадратором и монитором.
	Камера 1 зоны просвечивания обеспечивает оптическое изображение исследуемой зоны изделия. Камера 2 внутреннего обзора обеспечивает вид сверху взаимного расположения объекта исследования и компонентов комплекса. Камера 3 внутреннего обзора обеспечивает вид сбоку взаимного расположения объекта исследования и компонентов комплекса. Камера 4 наружного обзора обеспечивает вид на зону загрузки объекта исследования.
0	
Состав	- Пульт управления - Программное обеспечение управления томографом и улучшения изображения - Устройство считывания штрих-кода (опция)
Пульт управления, особенности	- кнопки управления дверью и рентгеновским излучением; - переключатель с ключом, работающим в трех положениях, для предотвращения несанкционированного включения системы возможность работы в перчатках; - клавиатура, мышь. 2 монитора с диагональю 21".
Управляющий компьютер, характеристики	- Процессор Intel Core i3 - Оперативная память 4 Gb - Жесткий диск SSD 120Gb - Сетевая карта 1 Gbps - Операционная система Windows 10 x32
Программное обеспечение	Управление рентгеновским аппаратом • Автоматическая тренировка трубки • Автоматическое или ручное задание параметров излучения Ввод изображений и управление детектором • Автоматическая инициализация детектора. • Автоматическое или ручное задание параметров детектора (усиление, время интегрирования, биннинг). • Геометрические преобразования при вводе изображения (область интереса, поворот, отражение). • Автоматическое или ручное создание и выбор калибровочных карт детектора (офсет, усиление, карта битых пикселей). Настройка и калибровка томографа • автоматизированная коррекция неточностей юстировки осей манипулятора и детектора • автоматизированное определение параметров
	восстановления томограммы проверка метрологических параметров томографа

(при наличии опции Метрология)

Управление сбором проекционных данных и анализом результатов

- Задание геометрии съемки
- Выбор режима съемки: послойная томография, спиральная томография, ламинография
- Нестандартные режимы сканирования: виртуальное расширение детектора, умный скан (опции)
- Задание параметров регистрации: кратность накопления, режим считывания детектором
- Составление рецептов типовых программ контроля
- Идентификация изделия (вручную или по штрих-коду)
- Съемка по заданной программе
- Экспорт данных в ПО реконструкции и анализа с указанием выбранных модулей, и опций анализа
- Автоматическая передача актуальной геометрии в программу восстановления
- Автоматическая коррекция нарушений юстировки в реальном времени при съемке проекционных данных (опция RTA) повышает метрологическую точность прибора при использовании микрофокусных трубок.

Регистрация и анализ 2-D изображений

- Оптимизация яркости и контраста по гистограмме всего изображения или его выделенной части.
- Автоматическая оптимизация яркости и контраста, задаваемая по всему изображению или его выделенной части.
- Масштабирование прокруткой, выделением, выбором масштаба.
- Улучшение читаемости изображения с помощью фильтров различного типа.
- Устранение «разноплотности» снимка, выравнивание яркости по полю изображения для
- одновременного просмотра участков разной толщины. Универсальный алгоритм оптимизации контраста –
- Цифровая «лупа».
- Цифровой биннинг.
- Негатив.
- Окрашивание.

«АВУ-Тестрон».

- Редактирование и выполнение последовательностей действий.
- Измерение расстояний и размеров дефектов на объекте контроля.
- Формирование линейки с привязкой к объекту (формирование непрерывной линейки по всей длине объекта
- Измерение яркости (плотности) в данной точке.
- Вывод гистограммы яркости изображения или его выделенной части.
- Построение профиля яркости по выделенному отрезку.
- Определение нормализованного отношения сигнал/шум по ISO 17636
- Автоматизированное определение базового пространственного разрешения по снимку эталона Duplex

	Wire
Система реконструкции томограмм и трехмерной визуализации	
Состав	- Программа реконструкции и визуализации трехмерных изображений - Программа подготовки данных - Компьютер визуализации
Компьютер визуализации, характеристики*	- Процессор Intel Core i7 или Intel Xeon - Количество ядер ≥ 4 - Оперативная память ≥ 128 Gb - Хранилище данных ≥ 4 Tb - Видеокарта NVIDIA CUDA (RAM ≥ 4Gb) - Система архивирования Blue-Ray - UPS 1000 BA
*) зависят от выбранного детектора	- Мониторы 2 x 21" - Операционная система Windows 10 x64
Программное обеспечение реконструкции и визуализации	Предпроцессинг проекционных данных ■ подавление рассеянного излучения (опция SST) ■ адаптивное подавление шумов ■ специализированная фильтрация ■ коррекция жестчения ■ коррекция лага ■ адаптация данных, полученных в нестандартных режимах сканирования, для программы восстановления Восстановление и визуализация ■ построение трехмерной модели объекта; ■ выполнение сечений и разрезов на трехмерной модели объекта; ■ применение эффектов освещения, теней, регулируемой прозрачности; ■ окрашивание модели; ■ регистрация модели в пространстве; ■ построение произвольных двумерных сечений объекта; ■ измерение расстояний и углов на сечениях; ■ измерение уровня серого в точке и статистика в выбранных интервалах профиля интенсивностей ■ экспорт сечений в стандартных графических форматах; ■ экспорт САD модели в формате STL ■ создание анимационных роликов в формате .AVI или пакета двумерных изображений
«Виртуальное расширение детектора»	
Состав	- специализированное программное обеспечение
Функциональные возможности	- изменение алгоритма сканирования, обеспечивающее размер томограммы, превышающий размеры детектора - предварительная обработка проекционных данных,

	позволяющая применять стандартное ПО
	восстановления.
Дополнительные компоненты оборудования и ПО	Не входят в базовую комплектацию, поставляются по заказу
Автоматическая лимитирующая диафрагма пучка	Автоматический коллиматор для отсечения неиспользуемого излучения и ослабления потока рассеянного излучения на детектор. Обеспечивает режим веерного пучка. - 4 независимых шторки - свинцовый эквивалент 30мм - ручное и программное управление
Лазерный указатель центра пучка излучения	
Тип	Сканирующий двухкоординатный.
Состав и функциональность	Состоит из двух сканирующих лазеров, расположенных сбоку от выходного отверстия трубки и формирующих перекрестие на объекте. Лазеры не перекрывают рентгеновское излучение и их не нужно механически перемещать для проведения центрирования пучка.
Система термостабилизации детектора	Система поддержания постоянной во времени температуры детектора.
Функциональные возможности	- Предотвращает термически-инициированные изменения распределения темнового сигнала детектора.
Опция «Метрология»	
Состав	– сертификат утверждения типа средств измерения. - методика поверки - калибровочный эталон.
Опция 3D-PB. Расширенная 3D-визуализация	
Функциональные возможности	 возможность подключения доп. модулей анализа области интереса в воксельных и САD-моделях сегментация и классификация создание поверхностной модели и экспорт в STL-формате взаимная конвертация данных в виде вокселей, полигональных моделей, облаков точек. импорт САD-моделей в форматах STEP, IGES математические операции с воксельными данными цифровая фильтрация автоматическая оценка по выбранным критериям макросы и шаблоны создание отчетов, включая экспорт в XLSX и PDF файлы
	 комбинированный анализ, например, оценка размеров дефекта в сравнении с толщиной стенки

- модуль координатных измерений; - модуль сравнения с САПР данными; - модуль анализа толщины стенок; - модуль анализа пустот и включений.
Повышает метрологическую точность прибора при использовании микрофокусных трубок.
- устройство латерального сдвига детектора - специализированное программное обеспечение
- коррекция изменений геометрии, вызванных дрейфом фокусного пятна и механическими сдвигами, вызванными тепловым расширением конструкционных элементов
специализированная оснастка с дистанционным управлением специализированное программное обеспечение
- улучшение качества трехмерной модели за счёт ослабления артефактов, вызванных вкладом рассеянного излучения в проекционные данные - расширение области применения модулей анализа трехмерных моделей
- специализированное программное обеспечение
 программирование и выполнение сканирования с заданным законом изменения углового инкремента, времени накопления сокращение времени, необходимого для сканирования сложных объектов
- динамическое управление шторками лимитирующей диафрагмы - ослабление артефактов и увеличение отношения сигнал/шум за счет ослабления потока рассеянного излучения
- специализированное программное обеспечение
- исключает артефакты, присущие стандартному аксиальному скану (неадекватное отображение плоскостных дефектов и структурных элементов, перпендикулярных оси вращения в нецентральных

AO «TECTPOH»

Люботинский проспект 8А, Санкт-Петербург, Россия, 196084

секретарь: +7 (812) 380-62-00; отдел продаж: +7 (812) 380-62-03; факс: +7 (812)

380-62-02